Orthonormalized eigenstates of the operator $(\hat{a} f(\hat{n}))^{k}(k \geqslant 1)$ and their generation

Xiao-Ming Liu
Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China \dagger and
CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China
E-mail: Liuxm@263.net

Received 3 August 1999

Abstract

The k orthonormalized eigenstates of the powers $(\hat{a} f(\hat{n}))^{k}(k \geqslant 1)$ of the annihilation operator $\hat{a} f(\hat{n})$ of f-oscillators are obtained and their properties are discussed. An alternative method to construct them is proposed, and the result shows that all of the eigenstates can be generated by a linear superposition of $k f$-coherent states.

1. Introduction

Recently, there has been much interest in the study of nonlinear coherent states called f coherent states [1], which are eigenstates of the annihilation operator $\hat{a} f(\hat{n})$ of f-oscillators. A class of f-coherent states can be realized physically as the stationary states of the centre-of-mass motion of a trapped ion [2]. The f-coherent states exhibit non-classical features such as squeezing and self-splitting. Subsequently, even and odd f-coherent states, which are orthonormalized eigenstates of the square $(\hat{a} f(\hat{n}))^{2}$ of the operator $\hat{a} f(\hat{n})$, were constructed and their non-classical effects were studied [3,4]. In this paper, we will construct orthonormalized eigenstates of the high powers $(\hat{a} f(\hat{n}))^{k}(k \geqslant 1)$ of the operator $\hat{a} f(\hat{n})$, discuss their properties and explore their generation in terms of f-coherent states.

2. The k orthonormalized eigenstates of $(\hat{a} f(\hat{n}))^{k}$

The annihilation operator A and the creation operator A^{+}of f-oscillators are distortions of the annihilation and creation operators \hat{a} and \hat{a}^{+}of the usual harmonic oscillator, and are given by $[1,2]$

$$
\begin{align*}
& A=\hat{a} f(\hat{n})=f(\hat{n}+1) \hat{a} \tag{1}\\
& A^{+}=f^{+}(\hat{n}) \hat{a}^{+}=\hat{a}^{+} f^{+}(\hat{n}+1) \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{n}=\hat{a}^{+} \hat{a} \quad[\hat{n}, A]=-A \quad\left[\hat{n}, A^{+}\right]=A^{+} \tag{3}
\end{equation*}
$$

where f is an operator-valued function of the number operator \hat{n}.
\dagger Mailing address.

The commutator between A and A^{+}can be easily computed by the relations

$$
\begin{align*}
& A=\sum_{n=0}^{\infty} \sqrt{n} f(n)|n-1\rangle\langle n| \tag{4}\\
& A^{+}=\sum_{n=0}^{\infty} \sqrt{n} f^{*}(n)|n\rangle\langle n-1| \tag{5}
\end{align*}
$$

and it reads

$$
\begin{equation*}
\left[A, A^{+}\right]=(\hat{n}+1) f^{2}(\hat{n}+1)-\hat{n} f^{2}(\hat{n}) \tag{6}
\end{equation*}
$$

where f is chosen to be real and $f^{+}(\hat{n})=f(\hat{n})$.
Let us consider the following states:

$$
\begin{equation*}
\left|\psi_{j}(\alpha, f)\right\rangle_{k}=C_{j} \sum_{n=0}^{\infty} \frac{\alpha^{k n+j}}{\sqrt{(k n+j)!} f(k n+j)!}|k n+j\rangle \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
f(k n+j)!=f(k n+j) f(k n+j-1) \ldots f(1) f(0) \tag{8}
\end{equation*}
$$

where k is a positive integer $(k=1,2,3, \ldots) ; j=0,1, \ldots, k-1 ; C_{j}$ are normalized factors and α is a complex parameter. With A^{k} operating on $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$, we have

$$
\begin{align*}
A^{k}\left|\psi_{j}(\alpha, f)\right\rangle_{k} & =\alpha^{k} C_{j} \sum_{n=0}^{\infty} \frac{\alpha^{k n+j}}{\sqrt{(k n+j)!} f(k n+j)!}|k n+j\rangle \\
& =\alpha^{k}\left|\psi_{j}(\alpha, f)\right\rangle_{k} \tag{9}
\end{align*}
$$

As a result, the k states of (7) are all the eigenstates of the operator A^{k} with the same eigenvalue α^{k}. It is easy to check that, for the same value of k, these states are orthogonal to each other with respect to the subscript j

$$
\begin{equation*}
{ }_{k}\left\langle\psi_{i}(\alpha, f) \mid \psi_{j}\left(\alpha^{\prime}, f\right)\right\rangle_{k}=0 \quad(i, j=0,1, \ldots, k-1, i \neq j) \tag{10}
\end{equation*}
$$

Let $|\alpha|^{2}=x$. We easily suppose C_{j} to be real number. Using the normalized conditions
${ }_{k}\left\langle\psi_{j}(\alpha, f) \mid \psi_{j}(\alpha, f)\right\rangle_{k}=C_{j}^{2} \sum_{n=0}^{\infty} \frac{x^{k n+j}}{(k n+j)![f(k n+j)!]^{2}}=C_{j}^{2} A_{j}(x, f)=1$.
We have

$$
\begin{equation*}
C_{j}=A_{j}^{-1 / 2}(x, f) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{j}(x, f)=\sum_{n=o}^{\infty} \frac{x^{k n+j}}{(k n+j)![f(k n+j)!]^{2}} . \tag{13}
\end{equation*}
$$

From (13) it follows that

$$
\begin{equation*}
\sum_{j=0}^{k-1} A_{j}(x, f)=\sum_{n=0}^{\infty} \frac{x^{n}}{n![f(n)!]^{2}} \equiv e_{f}(x) \tag{14}
\end{equation*}
$$

It should be noted that the k states $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ are normalizable provided C_{j} are non-zero and finite. This means that the terms in summation for $A_{j}(x, f)$ should be such that

$$
\begin{equation*}
|\alpha|^{2}<\lim _{n \rightarrow \infty} n f^{2}(n) . \tag{15}
\end{equation*}
$$

If $f(n)$ decreases faster than $n^{-1 / 2}$ for large n, then the range of α, for which the $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ are normalizable, is restricted to values satisfying (15) and in other cases the range of α is unrestricted.

We may obtain

$$
\begin{array}{ll}
A\left|\psi_{j}(\alpha, f)\right\rangle_{k}=\alpha A_{j}^{-1 / 2}\left(|\alpha|^{2}, f\right) A_{j-1}^{1 / 2}\left(|\alpha|^{2}, f\right)\left|\psi_{j-1}(\alpha, f)\right\rangle_{k} & j=1,2, \ldots, k-1 \\
A^{i}\left|\psi_{0}(\alpha, f)\right\rangle_{k}=\alpha^{i} A_{0}^{-1 / 2}\left(|\alpha|^{2}, f\right) A_{k-i}^{1 / 2}\left(|\alpha|^{2}, f\right)\left|\psi_{k-i}(\alpha, f)\right\rangle_{k} & i=1,2, \ldots, k \tag{16}
\end{array}
$$

It indicates that, by the successive actions of the operator A, the k eigenstate vectors of A^{k} can be transformed into each other in this way: $\left|\psi_{0}\right\rangle_{k} \rightarrow\left|\psi_{k-1}\right\rangle_{k} \rightarrow\left|\psi_{k-2}\right\rangle_{k} \rightarrow \cdots \rightarrow\left|\psi_{1}\right\rangle_{k} \rightarrow$ $\left|\psi_{0}\right\rangle_{k}$. Actually, the operator A plays the role of a rotating operator in the k eigenstate vectors of A^{k}.

The definition of f-coherent states [1] is

$$
\begin{equation*}
|\alpha, f\rangle=N_{f} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!} f(n)!}|n\rangle \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
N_{f}=\left(e_{f}\left(|\alpha|^{2}\right)\right)^{-1 / 2} \tag{19}
\end{equation*}
$$

In terms of the k eigenstates $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ of A^{k}, the f-coherent states can be expanded in this way

$$
\begin{equation*}
|\alpha, f\rangle=N_{f}\left[\sum_{j=0}^{k-1} A_{j}^{1 / 2}\left(|\alpha|^{2}, f\right)\left|\psi_{j}(\alpha, f)\right\rangle_{k}\right] \tag{20}
\end{equation*}
$$

Note that $|\alpha, f\rangle$ and $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ are non-trivially different.
We should emphasize that here we discuss orthogonality of $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ with respect to the subscript j. For $\alpha \neq \alpha^{\prime}$, we obtain

$$
\begin{align*}
{ }_{k}\left\langle\psi_{j}(\alpha, f) \mid \psi_{j}\left(\alpha^{\prime}, f\right)\right\rangle_{k} & =\left[A_{j}\left(|\alpha|^{2}, f\right) A_{j}\left(\left|\alpha^{\prime}\right|^{2}, f\right)\right]^{-1 / 2} \sum_{n=0}^{\infty} \frac{\left(\alpha^{*} \alpha^{\prime}\right)^{k n+j}}{(k n+j)![f(k n+j)!]^{2}} \\
& =\left[A_{j}\left(|\alpha|^{2}, f\right) A_{j}\left(\left|\alpha^{\prime}\right|^{2}, f\right)\right]^{-1 / 2} A_{j}\left(\alpha^{*} \alpha^{\prime}, f\right) \neq 0 \tag{21}
\end{align*}
$$

Therefore, when $\alpha \neq \alpha^{\prime},\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ and $\left|\psi_{j}\left(\alpha^{\prime}, f\right)\right\rangle_{k}$ are not orthogonal.
As $k=1,\left|\psi_{0}(\alpha, f)\right\rangle_{1}$ are exactly the f-coherent states.
As two special cases, for $f(\hat{n}) \rightarrow \hat{1},\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ become k orthonormalized eigenstates of the high powers of the annihilation operator of the usual harmonic oscillator [5]; for $f(\hat{n}) \rightarrow \sqrt{\left(q^{\hat{n}}-q^{-\hat{n}}\right) /\left(q-q^{-1}\right) \hat{n}}$ (where q is a continuous parameter), $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ become k orthonormalized eigenstates of that of the q-deformed harmonic oscillator [6].

It is interesting to note that Klauder and co-workers have studied an extremely wide class of coherent states that includes the f-coherent states as a small subset [7-9]. However, the k orthonormalized eigenstates of A^{k} are different from the Klauder-type coherent states. The k states can also be obtained by considering a suitable linear superposition of the Klauder-type states.

3. Generation of the k orthonormalized eigenstates of $(\hat{a} f(\hat{n}))^{k}$

According to (20), we consider the following $k f$-coherent states:
$\left|\alpha_{l}, f\right\rangle=\left|\alpha \mathrm{e}^{\mathrm{i} 2 \pi l / k}, f\right\rangle$

$$
\begin{equation*}
=e_{f}^{-1 / 2}\left(|\alpha|^{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!} f(n)!} \mathrm{e}^{\mathrm{i}(2 \pi / k) l n}|n\rangle \quad l=0,1, \ldots, k-1 . \tag{22}
\end{equation*}
$$

The $k f$-coherent states are discretely distributed with an equal interval of angle along a circle around the origin of the α-plane. The inner product of the two states of (22) is

$$
\begin{equation*}
\left\langle\alpha_{l}, f \mid \alpha_{l^{\prime}}, f\right\rangle=e_{f}^{-1}\left(|\alpha|^{2}\right) e_{f}\left(|\alpha|^{2} \mathrm{e}^{\mathrm{i} 2 \pi\left(l^{\prime}-l\right) / k}\right) \quad\left(l, l^{\prime}=0,1, \ldots, k-1\right) . \tag{23}
\end{equation*}
$$

Consider a linear transformation S such that

$$
\begin{equation*}
|\varphi\rangle_{k}=S|\alpha, f\rangle_{k} \tag{24}
\end{equation*}
$$

where

$$
|\alpha, f\rangle_{k}=\left[\begin{array}{c}
\left|\alpha_{0}, f\right\rangle \tag{25}\\
\left|\alpha_{1}, f\right\rangle \\
\vdots \\
\left|\alpha_{k-1}, f\right\rangle
\end{array}\right] \quad|\varphi\rangle_{k}=\left[\begin{array}{c}
\left|\varphi_{0}\right\rangle_{k} \\
\left|\varphi_{1}\right\rangle_{k} \\
\vdots \\
\left|\varphi_{k-1}\right\rangle_{k}
\end{array}\right]
$$

S is a $k \times k$ matrix that makes φ_{j} orthonormal, and ${ }_{k}\left\langle\varphi_{j} \mid \varphi_{j^{\prime}}\right\rangle_{k}=\delta_{j j^{\prime}}$. The above requirement leads to a set of algebraic equations for $S_{i j}$,

$$
\begin{equation*}
\sum_{l=0}^{k-1} \sum_{l^{\prime}=0}^{k-1} e_{f}^{-1}\left(|\alpha|^{2}\right) e_{f}\left(|\alpha|^{2} \mathrm{e}^{\mathrm{i}(2 \pi / k)\left(l^{\prime}-l\right)}\right) S_{j l^{\prime}}^{*} S_{j^{\prime} l^{\prime}}=\delta_{j j^{\prime}} \tag{26}
\end{equation*}
$$

The solution of equation (26), $S_{i j}$, can be found as follows. By virtue of the relation
$\sum_{l^{\prime}=0}^{k-1} e_{f}\left(|\alpha|^{2} \mathrm{e}^{ \pm \mathrm{i}(2 \pi / k)\left(l^{\prime}-l\right)}\right) \mathrm{e}^{-\mathrm{i}(2 \pi / k) j l^{\prime}}=\mathrm{e}^{-\mathrm{i}(2 \pi / k) j l} \sum_{l^{\prime}=0}^{k-1} e_{f}\left(|\alpha|^{2} \mathrm{e}^{ \pm \mathrm{i}(2 \pi / k) l^{\prime}}\right) \mathrm{e}^{-\mathrm{i}(2 \pi / k) j l^{\prime}}$
the matrix elements of S that satisfy (26) are given by

$$
\begin{align*}
S_{j l} & =\frac{1}{k} e_{f}^{1 / 2}\left(|\alpha|^{2}\right)\left[\frac{1}{k} \sum_{l^{\prime}=0}^{k-1} e_{f}\left(|\alpha|^{2} \mathrm{e}^{\mathrm{i}(2 \pi / k) l^{\prime}}\right) \mathrm{e}^{-\mathrm{i}(2 \pi / k) j l^{\prime}}\right]^{-1 / 2} \mathrm{e}^{-\mathrm{i}(2 \pi / k) j l} \\
& =\frac{1}{k} e_{f}^{1 / 2}\left(|\alpha|^{2}\right) A_{j}^{-1 / 2}\left(|\alpha|^{2}, f\right) \mathrm{e}^{-\mathrm{i}(2 \pi / k) j l} \quad(j, l=0,1 \ldots, k-1) \tag{28}
\end{align*}
$$

From (24) and (28), we obtain k orthonormalized states

$$
\begin{equation*}
\left|\varphi_{j}\right\rangle_{k}=\frac{1}{k} A_{j}^{-1 / 2}\left(|\alpha|^{2}, f\right) e_{f}^{1 / 2}\left(|\alpha|^{2}\right) \sum_{l=0}^{k-1} \mathrm{e}^{-\mathrm{i}(2 \pi / k) j l}\left|\alpha \mathrm{e}^{\mathrm{i}(2 \pi / k) l}, f\right\rangle \quad j=0,1, \ldots, k-1 \tag{29}
\end{equation*}
$$

which are just what we want. By use of the relation

$$
\begin{equation*}
\sum_{l=0}^{k-1} \mathrm{e}^{\mathrm{i}(2 \pi / k) l t}=0 \quad t=1,2, \ldots, k-1 \tag{30}
\end{equation*}
$$

it can be proved that

$$
\begin{equation*}
\left|\varphi_{j}\right\rangle_{k}=\left|\psi_{j}(\alpha, f)\right\rangle_{k} \quad j=0,1, \ldots, k-1 \tag{31}
\end{equation*}
$$

According to (29), for $k=2$, we obtain

$$
\begin{align*}
& \left|\varphi_{0}\right\rangle_{2}=\frac{1}{2} A_{0}^{-1 / 2}\left(|\alpha|^{2}, f\right) e_{f}^{1 / 2}\left(|\alpha|^{2}\right)(|\alpha, f\rangle+|-\alpha, f\rangle) \tag{32}\\
& \left|\varphi_{1}\right\rangle_{2}=\frac{1}{2} A_{1}^{-1 / 2}\left(|\alpha|^{2}, f\right) e_{f}^{1 / 2}\left(|\alpha|^{2}\right)(|\alpha, f\rangle-|-\alpha, f\rangle) \tag{33}
\end{align*}
$$

which are just the so-called even and odd f-coherent states studied in [3].
The $\left|\varphi_{j}\right\rangle_{k}(j=0,1, \ldots, k-1)$ in (29) are exactly the k orthonormalized eigenstates of $(\hat{a} f(\hat{n}))^{k}$ obtained in section 2, but reconstructed here by a different method. From the above reconstruction, we come to an important conclusion that any orthonormalized eigenstates of $(\hat{a} f(\hat{n}))^{k}$ can be generated from a linear superposition of $k f$-coherent states $\left|\alpha \mathrm{e}^{\mathrm{i}(2 \pi / k) l}, f\right\rangle$ ($l=0,1, \ldots, k-1$), which have the same amplitude but different phases. Yet, from (29), one can find the connection between f-coherent states and these k eigenstates.

4. Summary

We have derived the k orthonormalized eigenstates of the powers $(\hat{a} f(\hat{n}))^{k}(k \geqslant 1)$ of the annihilation operator $\hat{a} f(\hat{n})$ of f-oscillators, and discussed their properties. An alternative method to construct such eigenstates is proposed, and we come to an important conclusion that all of them can be generated by a linear superposition of $k f$-coherent states that have the same amplitude but different phases.

Acknowledgment

I would like to thank the referees for suggestions leading to the improvement of the paper.

References

[1] Manko V I, Marmo G, Zaccaria F and Sudarshan E C G 1997 Phys. Scr. 55528
[2] de Matos Filho R L and Vogel W 1996 Phys. Rev. A 544560
[3] Mancini S 1997 Phys. Lett. A 233291
[4] Sivakumar S 1989 Phys. Lett. A 250257
[5] Sun J, Wang J and Wang C 1991 Phys. Rev. A 443369
[6] Liu X-M, Wang S-J and Zhang W-Z 1995 Phys. Rev. A 514929 Liu X-M 1994 PhD Thesis Lanzhou University, China
[7] Klauder J R 1993 Mod. Phys. Lett. A 81735
[8] Klauder J R 1995 Ann. Phys. 237147
[9] Gazeau J P and Klauder J R 1999 J. Phys. A: Math. Gen. 32123

