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Abstract. Thek orthonormalized eigenstates of the pom(érﬁ‘(ﬁ))k (k > 1) of the annihilation
operatora f (n) of f-oscillators are obtained and their properties are discussed. An alternative
method to construct them is proposed, and the result shows that all of the eigenstates can be
generated by a linear superpositiorkof -coherent states.

1. Introduction

Recently, there has been much interest in the study of nonlinear coherent statesfealled
coherent states [1], which are eigenstates of the annihilation opératay of f-oscillators.

A class of f-coherent states can be realized physically as the stationary states of the
centre-of-mass motion of a trapped ion [2]. THecoherent states exhibit non-classical
features such as squeezing and self-splitting. Subsequently, even arfdontiérent states,
which are orthonormalized eigenstates of the sql(@fe(ﬁ))2 of the operatod f (n), were
constructed and their non-classical effects were studied [3, 4]. In this paper, we will construct
orthonormalized eigenstates of the high powgrg(7))* (k¢ > 1) of the operatod f (1),
discuss their properties and explore their generation in ternfsatfherent states.

2. Thek orthonormalized eigenstates of ¥ (n))"

The annihilation operatot and the creation operatadr of f-oscillators are distortions of the
annihilation and creation operatd@rsainda* of the usual harmonic oscillator, and are given by
(1,2]

A=af@) = f@n+Da 1)

AT = fr(yat =a"fr(h+1) (2)
where

n=a"a [A,A] = -A [A, A= A" (3)

where f is an operator-valued function of the number operator

t Mailing address.

0305-4470/99/498685+05$30.00 © 1999 IOP Publishing Ltd 8685



8686 X-M Liu

The commutator betweefiandA* can be easily computed by the relations

A=) Vaf@)n—1)n] (4)
n=0
AT =) afrmn)n— 1 (5)
n=0
and it reads
[A, AT] = A+ D) f2(A+1) — Af2(R) (6)

where f is chosen to be real anf* @) = f (7).
Let us consider the following states:

kn+j
[ ) mej(kn+J)|l n+j) )
with
flkn+ Pt = flkn+j)flkn+j—1)...f(1) f(0) (8)
wherek is a positive integerk(=1,2,3,...); j =0, 1,...,k —1; C; are normalized factors

anda is a complex parameter. With* operating ony; («, f))x, we have
akn+j

k . —_ k 400 7
Al Pl =« C’;Wﬂknw)! lken + )

= o Y@, ) ©
As a result, thek states of (7) are all the eigenstates of the operatowith the same
eigenvaluex®. It is easy to check that, for the same value pfhese states are orthogonal to
each other with respect to the subscript

(Wi, IV, k=0 (,j=01....k=11i#)). (10)

Let |«|? = x. We easily suppos€; to be real number. Using the normalized conditions

kn+j
C2A; =1 11
Wi, P, Z(kn+])'[f(kn+J)']2 j i f) (11)
We have
Ci =A%, ) (12)
where
o kn+j
sl (13)

A =2 (kn + DILf Gkn+ HZ

n=o

From (13) it follows that

ZA (x, f) = Z ,[f( ),]2 er(x). (14)

n=0

It should be noted that thestategy; («, f))« are normalizable provided; are non-zero
and finite. This means that the terms in summatiordfpgr, f) should be such that

la|? < ILmoonfz(n). (15)
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If f(n) decreases faster than'/? for largen, then the range af, for which thely; (o, )«
are normalizable, is restricted to values satisfying (15) and in other cases the rangge of
unrestricted.

We may obtain

Al (e, )= aAT 2 (al? HATZ (el Y- P j=12...k-1
(16)
Allo(a, M) =o' A2l HAL el HlYeeiCe H)e =12k  (17)

It indicates that, by the successive actions of the operittirek eigenstate vectors off can
be transformed into each other in this wawo)r — [Vi_1)x = [Yi_2)x — -+ = Y1) —
[vo)x. Actually, the operator plays the role of a rotating operator in theigenstate vectors
of A*.

The definition of f-coherent states [1] is

o, ) = (18)

N Z f Fon "
with
Ny = (ep(ja®) (19)

In terms of thek eigenstates); («, f))y of A, the f-coherent states can be expanded in this
way

k-1
v, f) = Ny [Z AV (lal?, N (e f)»}. (20)
j=0

Note thatje, f) and|v; (e, f))x are non-trivially different.
We should emphasize that here we discuss orthogonality @, f)), with respect to
the subscripyj. Fora # o', we obtain

2 - (a*a/)"™
(Wie, Pl PO = [A;(al® Al HX: (ko + LS Gkn + DI

= [A;(al2. HA (P ] 24 @ £) #0. (21)

Therefore, whem # o', |1/ (e, f))r and|y; (o, f))x are not orthogonal.

Ask =1, |Yo(e, f))1 are exactly thef-coherent states.

As two special cases, fof(n) — i, [ (e, ))x becomek orthonormalized eigenstates
of the high powers of the annihilation operator of the usual harmonic oscillator [5]; for
f@) = (q" — g~ /(g — g~ YA (whereg is a continuous parametef¥; («, f))x become
k orthonormalized eigenstates of that of theeformed harmonic oscillator [6].

It is interesting to note that Klauder and co-workers have studied an extremely wide class
of coherent states that includes tfiecoherent states as a small subset [7—9]. Howevek the
orthonormalized eigenstates 4f are different from the Klauder-type coherent states. fhe
states can also be obtained by considering a suitable linear superposition of the Klauder-type
states.
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3. Generation of thek orthonormalized eigenstates of¢¥(n))*
According to (20), we consider the followirigf-coherent states:

lay, ) = la€?/k )

-2, 2 < o i(2r/k)in — —

Thek f-coherent states are discretely distributed with an equal interval of angle along a circle
around the origin of the-plane. The inner product of the two states of (22) is

(s flaw, f) = e (e (Jal?e™ ¢ D) ,I'=01,....,k—1). (23)
Consider a linear transformatighsuch that
lp)k = Sla, fk (24)
where
levo, f) lwo)k
lag, f) lo1)x
ot fhi = : =1 . | (25)
letk—1, f) |ok—1)k

S is ak xk matrix that makeg; orthonormal, ang{g;l¢; ) = §;;. The above requirement
leads to a set of algebraic equations Sgr,

k—

[y

k—

=

e;l(kx|2)ef(|a|2ei(2ﬂ/k)(l/_l)) S;(]Sj/l’ = 8]]’ (26)

—~
Il
o

I

||
o

The solution of equation (26§;;, can be found as follows. By virtue of the relation

k-1 k-1
ef(|a|2eil(2ﬂ/k)(1’—l)) g i@1/hjl _ g-i@r/k)jl Z ef(|a|2eil(2n/k)l’) g i@r/k)jl' 27)
1'=0 '=0

the matrix elements of that satisfy (26) are given by
1 142 e
1/2 j N\ o i —i j
Si= §€f/ (|a|2)|:£ Zoef(|a|2e|(2n/k)z ) e |(2n/k)jz:| g i@r/h)jl
=

1 _ . )
- F}/Z(iozF)A,» Y2 (laf?, et (.1=0,1....k—1. (28)

From (24) and (28), we obtainorthonormalized states

1 k—1 ) ) )
o = ZA; el ef*(laf?) Y e @0 gd @Ml f) - j=0.1.. k=1
=0

which are just what we want. By use of the relation

k—1
> @i =g 1=12... k-1 (30)
=0
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it can be proved that

lpile = 1V, )k j=01... k-1 (31)
According to (29), fork = 2, we obtain

lpo)2 = 240 2l ) e (P (e, £) +|—a. f)) (32)

lp)2 = 34 (e, £ e 2 (e (e f) — |—e. ) (33)

which are just the so-called even and offd¢oherent states studied in [3].

Thelp;)x (j =0,1,...,k—1)in (29) are exactly thé& orthonormalized eigenstates of
(&f(ﬁ))" obtained in section 2, but reconstructed here by a different method. From the above
reconstruction, we come to an important conclusion that any orthonormalized eigenstates of
(4 f(7))* can be generated from a linear superpositioh gf-coherent statefge @ /0! f)

(1 =0,1,...,k — 1), which have the same amplitude but different phases. Yet, from (29),
one can find the connection betwegrcoherent states and theseigenstates.

4. Summary

We have derived thé orthonormalized eigenstates of the powe?rgf(ﬁ))k (k = 1) of the
annihilation operatotf: f (n) of f-oscillators, and discussed their properties. An alternative
method to construct such eigenstates is proposed, and we come to an important conclusion
that all of them can be generated by a linear superpositianfeEoherent states that have the
same amplitude but different phases.
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